We consider the scenario of a sensing, computing and communicating infrastructure with a a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then face the problem of setting up the desired application in case of hundreds of nodes, which consists in identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. We approach the problem by considering every possible decomposition of the application's sensing and computing operations into tasks to be assigned to the each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions.

Energy-efficient task allocation for distributed applications in Wireless Sensor Networks

PILLONI, VIRGINIA;ATZORI, LUIGI
2011-01-01

Abstract

We consider the scenario of a sensing, computing and communicating infrastructure with a a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then face the problem of setting up the desired application in case of hundreds of nodes, which consists in identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. We approach the problem by considering every possible decomposition of the application's sensing and computing operations into tasks to be assigned to the each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions.
2011
978-146730040-7
Wireless Sensor Networks, network lifetime
File in questo prodotto:
File Dimensione Formato  
Energy-efficient task allocation for distributed applications in Wireless Sensor Networks.pdf

accesso aperto

Tipologia: versione post-print
Dimensione 117.95 kB
Formato Adobe PDF
117.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/109238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact