Recent advances in acquisition and modelling techniques led to generating an exponentially increasing amount of 3D shapes available both over the Internet or in specific databases. While the number grows it becomes more and more difficult to keep an organized knowledge over the content of this repositories. It is commonly intended that in the near future 3D shapes and models will be indexed and searched using procedure and instruments mimicking the same operations performed on images while using algorithms, data structures and instruments peculiar to the domain. In this context it is thus important to have tools for automatic characterization of 3D shapes, and skeletons and partitions are the two most prominent ones among them. In this paper we will describe an experience of building some of this tools on the top of a popular and robust library for manipulating meshes (OpenMesh). The preliminary results we present are promising enough to let us expect that the sum of the tools will be a useful aid to improving indexing and retrieval of digital 3D objects. The work presented here is part of a larger project: Three-Dimensional Shape Indexing and Retrieval Techniques (3-SHIRT), in collaboration with the Universities of Genoa, Padua, Udine, and Verona.
Topological operations on triangle meshes using the OpenMesh library
GUGGERI, FABIO;MARRAS, STEFANO;SCATENI, RICCARDO
2008-01-01
Abstract
Recent advances in acquisition and modelling techniques led to generating an exponentially increasing amount of 3D shapes available both over the Internet or in specific databases. While the number grows it becomes more and more difficult to keep an organized knowledge over the content of this repositories. It is commonly intended that in the near future 3D shapes and models will be indexed and searched using procedure and instruments mimicking the same operations performed on images while using algorithms, data structures and instruments peculiar to the domain. In this context it is thus important to have tools for automatic characterization of 3D shapes, and skeletons and partitions are the two most prominent ones among them. In this paper we will describe an experience of building some of this tools on the top of a popular and robust library for manipulating meshes (OpenMesh). The preliminary results we present are promising enough to let us expect that the sum of the tools will be a useful aid to improving indexing and retrieval of digital 3D objects. The work presented here is part of a larger project: Three-Dimensional Shape Indexing and Retrieval Techniques (3-SHIRT), in collaboration with the Universities of Genoa, Padua, Udine, and Verona.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.