In this paper we describe the dynamic behavior of elongated multi-structured media excited by flexural harmonic waves. We examine periodic structures consisting of continuous beams and discrete resonators disposed in various arrangements. The transfer matrix approach and Bloch–Floquet conditions are implemented for the determination of different propagation and non-propagation regimes. The effects of the disposition of the elements in the unit cell and of the contrast in the physical properties of the different phases have been analyzed in detail, using representations in different spaces and selecting a proper set of non-dimensional parameters that fully characterize the structure. Coupling in series and in parallel continuous beam elements and discrete resonators, we have proposed a class of micro-structured mechanical systems capable to control wave propagation within elastic structures.
Bloch–Floquet waves in flexural systems with continuous and discrete elements
CARTA, GIORGIO;BRUN, MICHELE
2015-01-01
Abstract
In this paper we describe the dynamic behavior of elongated multi-structured media excited by flexural harmonic waves. We examine periodic structures consisting of continuous beams and discrete resonators disposed in various arrangements. The transfer matrix approach and Bloch–Floquet conditions are implemented for the determination of different propagation and non-propagation regimes. The effects of the disposition of the elements in the unit cell and of the contrast in the physical properties of the different phases have been analyzed in detail, using representations in different spaces and selecting a proper set of non-dimensional parameters that fully characterize the structure. Coupling in series and in parallel continuous beam elements and discrete resonators, we have proposed a class of micro-structured mechanical systems capable to control wave propagation within elastic structures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.