Mixed tin-iridium oxide (Sn0.85Ir0.15O2) nanoparticles at low Ir content (15 mol%) were prepared by the sol-gel preparative route, varying calcination temperatures in the range 450-550 °C. The crystal structures, the phase composition and crystallite sizes were analyzed by X-ray powder diffraction (XRD). The local order of the materials was investigated by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) analysis revealed the variation of the Ir surface state with the temperature of firing. The morphology of crystallites and the aggregates were analyzed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), respectively. Nitrogen physisorption by BET method was adopted to evaluate the particle surface area and the mesopore volume distribution

Physico-chemical characterization of IrO2-SnO2 sol-gel nanopowders for electrochemical applications

RICCI, PIER CARLO;CANNAS, CARLA;MUSINU, ANNA MARIA GIOVANNA
2009-01-01

Abstract

Mixed tin-iridium oxide (Sn0.85Ir0.15O2) nanoparticles at low Ir content (15 mol%) were prepared by the sol-gel preparative route, varying calcination temperatures in the range 450-550 °C. The crystal structures, the phase composition and crystallite sizes were analyzed by X-ray powder diffraction (XRD). The local order of the materials was investigated by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) analysis revealed the variation of the Ir surface state with the temperature of firing. The morphology of crystallites and the aggregates were analyzed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), respectively. Nitrogen physisorption by BET method was adopted to evaluate the particle surface area and the mesopore volume distribution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/110431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact