A reactive barrier (RB) of transformed red mud (TRM), a by-product of the refinement of bauxite in alumina production, was placed adjacent to the anode of an electrokinetic (EK) system with the aim of enhancing removal of chromium or arsenic, added singly to a low permeability clayey soil, and favouring entrapment. The innovative study focused on evaluation of the synergic interaction between the EK system and the RB, and of the efficiency when compared to traditional EK remediation (control tests). The results obtained underlined the successful outcome of treatment of the Cr(VI)-contaminated soil. In presence of the TRM RB, 19.4% wt. of total Cr content was detected in the anolyte and 20.6% wt. trapped in the anodic RB after 6 d, versus 6.6% wt. in the anolyte and 8.8% wt. in the soil adjacent to the anode following the control run without RB. On increasing duration of treatment up to 12 d, 60.8% wt. of total initial Cr was found in the anolyte and 25.5% wt. trapped in the RB, versus 9.1% wt. and 5.3% wt., respectively, after a control run of the same duration. Finally, on increasing the mass of TRM in the RB, 60.6% wt. of initial Cr content was found to have accumulated in the RB, with Cr being completely absent from the anodic chamber. Conversely, combined treatment was much less effective on As contaminated soil, at least under the operative conditions applied. Low initial As concentration and interference with iron oxides in the soil were likely the reasons underlying low efficiency while attempting As decontamination.

Combined use of a transformed red mud reactive barrier and electrokinetics for remediation of Cr/As contaminated soil

CAPPAI, GIOVANNA SALVATORICA;DE GIOANNIS, GIORGIA;MUNTONI, ALDO;SPIGA, DANIELA;
2012-01-01

Abstract

A reactive barrier (RB) of transformed red mud (TRM), a by-product of the refinement of bauxite in alumina production, was placed adjacent to the anode of an electrokinetic (EK) system with the aim of enhancing removal of chromium or arsenic, added singly to a low permeability clayey soil, and favouring entrapment. The innovative study focused on evaluation of the synergic interaction between the EK system and the RB, and of the efficiency when compared to traditional EK remediation (control tests). The results obtained underlined the successful outcome of treatment of the Cr(VI)-contaminated soil. In presence of the TRM RB, 19.4% wt. of total Cr content was detected in the anolyte and 20.6% wt. trapped in the anodic RB after 6 d, versus 6.6% wt. in the anolyte and 8.8% wt. in the soil adjacent to the anode following the control run without RB. On increasing duration of treatment up to 12 d, 60.8% wt. of total initial Cr was found in the anolyte and 25.5% wt. trapped in the RB, versus 9.1% wt. and 5.3% wt., respectively, after a control run of the same duration. Finally, on increasing the mass of TRM in the RB, 60.6% wt. of initial Cr content was found to have accumulated in the RB, with Cr being completely absent from the anodic chamber. Conversely, combined treatment was much less effective on As contaminated soil, at least under the operative conditions applied. Low initial As concentration and interference with iron oxides in the soil were likely the reasons underlying low efficiency while attempting As decontamination.
2012
Electrokinetic remediation; Chromate; Arsenate; Reactive barrier; Transformed red mud
File in questo prodotto:
File Dimensione Formato  
2012 Cappai et al - Combined-use-of-a-transformed-red-mud-reactive-barrier-and-electrokinetics-for-remediation-of-Cr-As-contaminated-soil.pdf

Solo gestori archivio

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/110449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 46
social impact