We prove that on a compact Sasakian manifold (M,n, g) of dimension 2n + 1, for any 0 ≤ p ≤ n the wedge product with n (dn)p defines an isomorphism between the spaces of harmonic forms Ωn-p Δ (M) and Ωn+p+1 Δ (M). Therefore it induces an isomorphism between the de Rham cohomology spaces Hn-p(M) and Hn+p+1(M). Such isomorphism is proven to be independent of the choice of a compatible Sasakian metric on a given contact manifold. As a consequence, an obstruction for a contact manifold to admit Sasakian structures is found.

Hard Lefschetz Theorem for Sasakian manifolds

CAPPELLETTI MONTANO, BENIAMINO;
2015

Abstract

We prove that on a compact Sasakian manifold (M,n, g) of dimension 2n + 1, for any 0 ≤ p ≤ n the wedge product with n (dn)p defines an isomorphism between the spaces of harmonic forms Ωn-p Δ (M) and Ωn+p+1 Δ (M). Therefore it induces an isomorphism between the de Rham cohomology spaces Hn-p(M) and Hn+p+1(M). Such isomorphism is proven to be independent of the choice of a compatible Sasakian metric on a given contact manifold. As a consequence, an obstruction for a contact manifold to admit Sasakian structures is found.
File in questo prodotto:
File Dimensione Formato  
euclid.jdg.1433975483.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 239.86 kB
Formato Adobe PDF
239.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/110540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact