Answering a question raised by Y.X. Huang, we prove what follows: if O is a bounded smooth domain and p > 1, then the mapping q → λq |O|^(p/q) is decreasing in ]0, p*[ and Lipschitz continuous on compact subsets of ]0, p*[, λq being the p-th power of the best Sobolev constant for the embedding of W^(1,p)(O) into L^q(O)

On a problem of Huang concerning best constants in Sobolev embeddings

IANNIZZOTTO, ANTONIO
2015-01-01

Abstract

Answering a question raised by Y.X. Huang, we prove what follows: if O is a bounded smooth domain and p > 1, then the mapping q → λq |O|^(p/q) is decreasing in ]0, p*[ and Lipschitz continuous on compact subsets of ]0, p*[, λq being the p-th power of the best Sobolev constant for the embedding of W^(1,p)(O) into L^q(O)
2015
p-Laplacian, Singular elliptic equations, Sobolev constants
File in questo prodotto:
File Dimensione Formato  
Anello-Faraci-Iannizzotto-AMAP.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 440.51 kB
Formato Adobe PDF
440.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/110864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact