The universal algebraic literature is rife with generalisations of discriminator varieties, whereby several investigators have tried to preserve in more general settings as much as possible of their structure theory. Here, we modify the definition of discriminator algebra by having the switching function project onto its third coordinate in case the ordered pair of its first two coordinates belongs to a designated relation (not necessarily the diagonal relation). We call these algebras factor algebras and the varieties they generate factor varieties. Among other things, we provide an equational description of these varieties and match equational conditions involving the factor term with properties of the associated factor relation. Factor varieties include, apart from discriminator varieties, several varieties of algebras from quantum and fuzzy logics.
Factor varieties
LEDDA, ANTONIO;PAOLI, FRANCESCO
2017-01-01
Abstract
The universal algebraic literature is rife with generalisations of discriminator varieties, whereby several investigators have tried to preserve in more general settings as much as possible of their structure theory. Here, we modify the definition of discriminator algebra by having the switching function project onto its third coordinate in case the ordered pair of its first two coordinates belongs to a designated relation (not necessarily the diagonal relation). We call these algebras factor algebras and the varieties they generate factor varieties. Among other things, we provide an equational description of these varieties and match equational conditions involving the factor term with properties of the associated factor relation. Factor varieties include, apart from discriminator varieties, several varieties of algebras from quantum and fuzzy logics.File | Dimensione | Formato | |
---|---|---|---|
factor_varieties.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
939.23 kB
Formato
Adobe PDF
|
939.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.