We investigated the effects of organic enrichment due to the biodeposition from fish farms on benthic prokaryotic and viral abundance and production, viral-induced prokaryotic mortality, enzymatic activities and bacterial diversity. We compared four areas across the Mediterranean Sea, from Cyprus to Spain, and two different habitats: sediments covered by the seagrass Posidonia oceanica and soft-bottom unvegetated sediments. In several cases, the sediments beneath the cages showed higher prokaryotic and viral abundance and production, and higher rates of organic matter decomposition. However, the differences between impact and control sediments were not consistent at all regions and habitats. Benthic bacterial diversity was always lower below the cages, where high viral-induced bacterial mortality rates were also observed. The d- and g-Proteobacteria dominated in both impacted and control sediments, but the relative importance of sulphate-reducing d- Proteobacteria increased beneath the cages. We conclude that aquaculture can have a significant impact on benthic prokaryotes and viruses, by stimulating prokaryotic metabolism and viral infections, reducing bacterial diversity and altering assemblage composition. However, these impacts vary depending upon the sediment type and the habitat characteristics.
Impact of aquaculture on benthic virus-prokaryote interactions in the Mediterranean Sea
PUSCEDDU, ANTONIO;
2013-01-01
Abstract
We investigated the effects of organic enrichment due to the biodeposition from fish farms on benthic prokaryotic and viral abundance and production, viral-induced prokaryotic mortality, enzymatic activities and bacterial diversity. We compared four areas across the Mediterranean Sea, from Cyprus to Spain, and two different habitats: sediments covered by the seagrass Posidonia oceanica and soft-bottom unvegetated sediments. In several cases, the sediments beneath the cages showed higher prokaryotic and viral abundance and production, and higher rates of organic matter decomposition. However, the differences between impact and control sediments were not consistent at all regions and habitats. Benthic bacterial diversity was always lower below the cages, where high viral-induced bacterial mortality rates were also observed. The d- and g-Proteobacteria dominated in both impacted and control sediments, but the relative importance of sulphate-reducing d- Proteobacteria increased beneath the cages. We conclude that aquaculture can have a significant impact on benthic prokaryotes and viruses, by stimulating prokaryotic metabolism and viral infections, reducing bacterial diversity and altering assemblage composition. However, these impacts vary depending upon the sediment type and the habitat characteristics.File | Dimensione | Formato | |
---|---|---|---|
Luna et al 2012 water Research.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
609.83 kB
Formato
Adobe PDF
|
609.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.