In this paper, we propose a framework to address the problem of generic 2-D shape recognition. The aim is mainly on using the potential strength of skeleton of discrete objects in computer vision and pattern recognition where features of objects are needed for classification. We propose to represent the medial axis characteristic points as an attributed skeletal graph to model the shape. The information about the object shape and its topology is totally embedded in them and this allows the comparison of different objects by graph matching algorithms. The experimental results demonstrate the correctness in detecting its characteristic points and in computing a more regular and effective representation for a perceptual indexing. The matching process, based on a revised graduated assignment algorithm, has produced encouraging results, showing the potential of the developed method in a variety of computer vision and pattern recognition domains. The results demonstrate its robustness in the presence of scale, reflection and rotation transformations and prove the ability to handle noise and occlusions.

Recognition of Shapes by Attributed Skeletal Graphs

DI RUBERTO, CECILIA
2004

Abstract

In this paper, we propose a framework to address the problem of generic 2-D shape recognition. The aim is mainly on using the potential strength of skeleton of discrete objects in computer vision and pattern recognition where features of objects are needed for classification. We propose to represent the medial axis characteristic points as an attributed skeletal graph to model the shape. The information about the object shape and its topology is totally embedded in them and this allows the comparison of different objects by graph matching algorithms. The experimental results demonstrate the correctness in detecting its characteristic points and in computing a more regular and effective representation for a perceptual indexing. The matching process, based on a revised graduated assignment algorithm, has produced encouraging results, showing the potential of the developed method in a variety of computer vision and pattern recognition domains. The results demonstrate its robustness in the presence of scale, reflection and rotation transformations and prove the ability to handle noise and occlusions.
Attributed relational graph; Graph matching; Morphological skeleton; Shape recognition; Indexing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/12635
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 61
social impact