Plasticity induced crack closure (PICC) has been widely studied using numerical models. Different numerical parameters can be considered to quantify the opening level, namely one based on the analysis of contact stresses at minimum load. A modified version of this parameter is proposed here, based on nodal contact forces instead of contact stresses. The predictions were found to be similar to those obtained from the contact status of 2nd node behind crack tip. The PICCcontact parameter was also found to be very consistent and adequate for parametric studies of the influence of different physical parameters. The contributions to the opening stress intensity factor of different points along crack flank were found to strongly decrease with distance to crack tip. The cumulative K-open between the crack tip and a distance of 0.1 mm was found to vary from 30% to 100%, increasing with stress ratio, R. Finally, a K solution was developed for punctual forces applied on crack flank and compared with a literature solution for infinite plates. A good agreement was found for plane strain state but significant differences of about 10% were found for plane stress state.

Numerical study of contact forces for crack closure analysis

GOODARZVAND CHEGINI, AMIR;
2014-01-01

Abstract

Plasticity induced crack closure (PICC) has been widely studied using numerical models. Different numerical parameters can be considered to quantify the opening level, namely one based on the analysis of contact stresses at minimum load. A modified version of this parameter is proposed here, based on nodal contact forces instead of contact stresses. The predictions were found to be similar to those obtained from the contact status of 2nd node behind crack tip. The PICCcontact parameter was also found to be very consistent and adequate for parametric studies of the influence of different physical parameters. The contributions to the opening stress intensity factor of different points along crack flank were found to strongly decrease with distance to crack tip. The cumulative K-open between the crack tip and a distance of 0.1 mm was found to vary from 30% to 100%, increasing with stress ratio, R. Finally, a K solution was developed for punctual forces applied on crack flank and compared with a literature solution for infinite plates. A good agreement was found for plane strain state but significant differences of about 10% were found for plane stress state.
2014
Contact forces; Contact stress method; Plasticity induced crack closure; Remote compliance;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/127036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact