We extend existing studies of weakly sensitive points within the framework of Tsallis non-extensive thermodynamics to include weakly insensitive points at the edge of chaos. Analyzing tangent points of the logistic map we have verified that the generalized entropy with suitable entropic index q correctly describes the approach to the attractor. © 2004 Elsevier B.V. All rights reserved.

Weak insensitivity to initial conditions at the edge of chaos in the logistic map

MEZZORANI, GIUSEPPE;TONELLI, ROBERTO
2004-01-01

Abstract

We extend existing studies of weakly sensitive points within the framework of Tsallis non-extensive thermodynamics to include weakly insensitive points at the edge of chaos. Analyzing tangent points of the logistic map we have verified that the generalized entropy with suitable entropic index q correctly describes the approach to the attractor. © 2004 Elsevier B.V. All rights reserved.
2004
Chaos; Entropy; Logistic map; Nonextensive statistical mechanics; Power law; Mathematical Physics; Statistical and Nonlinear Physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/13018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact