The thermal boundary resistance of Si/Ge interfaces has been determined using approach-to-equilibrium molecular dynamics simulations. Assuming a reciprocal linear dependence of the thermal boundary resistance, a length-independent bulk thermal boundary resistance could be extracted from the calculation resulting in a value of 3.76 × 10−9 m2 K/W for a sharp Si/Ge interface and thermal transport from Si to Ge. Introducing an interface with finite thickness of 0.5 nm consisting of a SiGe alloy, the bulk thermal resistance slightly decreases compared to the sharp Si/Ge interface. Further growth of the boundary leads to an increase in the bulk thermal boundary resistance. When the heat flow is inverted (Ge to Si), the thermal boundary resistance is found to be higher. From the differences in the thermal boundary resistance for different heat flow direction, a rectification factor of the Si/Ge interface can be determined and is found to significantly decrease when the sharp interface is moderated by introduction of a SiGe alloy in the boundary layer.

Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium molecular dynamics simulations

Hahn, Konstanze R.;COLOMBO, LUCIANO
2015

Abstract

The thermal boundary resistance of Si/Ge interfaces has been determined using approach-to-equilibrium molecular dynamics simulations. Assuming a reciprocal linear dependence of the thermal boundary resistance, a length-independent bulk thermal boundary resistance could be extracted from the calculation resulting in a value of 3.76 × 10−9 m2 K/W for a sharp Si/Ge interface and thermal transport from Si to Ge. Introducing an interface with finite thickness of 0.5 nm consisting of a SiGe alloy, the bulk thermal resistance slightly decreases compared to the sharp Si/Ge interface. Further growth of the boundary leads to an increase in the bulk thermal boundary resistance. When the heat flow is inverted (Ge to Si), the thermal boundary resistance is found to be higher. From the differences in the thermal boundary resistance for different heat flow direction, a rectification factor of the Si/Ge interface can be determined and is found to significantly decrease when the sharp interface is moderated by introduction of a SiGe alloy in the boundary layer.
Thermal transport; atomistic simulations
File in questo prodotto:
File Dimensione Formato  
PRB - Thermal boundary resistance at SiGe interfaces dermined by AEMD simulations.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: versione editoriale
Dimensione 560.03 kB
Formato Adobe PDF
560.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/132580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact