We show that thermal rectification by design is possible by joining/growing Si nanowires (SiNWs) with sections of appropriately selected diameters (i.e., telescopic nanowires). This is done, first, by showing that the heat equation can be applied at the nanoscale (NW diameters down to 5 nm). We (a) obtain thermal conductivity versus temperature, κ(T), curves from molecular dynamics (MD) simulations for SiNWs of three different diameters, then (b) we conduct MD simulations of a telescopic NW built as the junction of two segments with different diameters, and afterward (c) we verify that the MD results for thermal rectification in telescopic NWs are very well reproduced by the heat equation with κ(T) of the segments from MD. Second, we apply the heat equation to predict the amount of thermal rectification in a variety of telescopic SiNWs with segments made from SiNWs where κ(T) has been experimentally measured, obtaining r values up to 50%. This methodology can be applied to predict the thermal rectification of arbitrary heterojunctions as long as the κ(T) data of the constituents are available.

Thermal rectification by design in telescopic Si nanowires

COLOMBO, LUCIANO
Penultimo
Conceptualization
;
2015

Abstract

We show that thermal rectification by design is possible by joining/growing Si nanowires (SiNWs) with sections of appropriately selected diameters (i.e., telescopic nanowires). This is done, first, by showing that the heat equation can be applied at the nanoscale (NW diameters down to 5 nm). We (a) obtain thermal conductivity versus temperature, κ(T), curves from molecular dynamics (MD) simulations for SiNWs of three different diameters, then (b) we conduct MD simulations of a telescopic NW built as the junction of two segments with different diameters, and afterward (c) we verify that the MD results for thermal rectification in telescopic NWs are very well reproduced by the heat equation with κ(T) of the segments from MD. Second, we apply the heat equation to predict the amount of thermal rectification in a variety of telescopic SiNWs with segments made from SiNWs where κ(T) has been experimentally measured, obtaining r values up to 50%. This methodology can be applied to predict the thermal rectification of arbitrary heterojunctions as long as the κ(T) data of the constituents are available.
Thermal transport, Molecular dynamics, Nanowires, Phononics, Thermal rectification
File in questo prodotto:
File Dimensione Formato  
NL - Thermal Rectification by Design in Telescopic Si Nanowires.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Accepted-manuscript.pdf

accesso aperto

Descrizione: Accepted version
Tipologia: versione post-print
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/133792
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 55
social impact