Two kinds of nanocomposites of transition metal oxides were synthesized and investigated. Each nanocomposite comprises nanoparticles of La0.67Ca0.33MnO3 and CoFe2O4 in similar volume fractions, however arranged with different morphologies. The temperature-dependent magnetic and electrical properties of the two systems are found to greatly differ, suggesting different degrees of interaction and coupling of their constituents. This is confirmed by magnetic field-dependent experiments, which reveal contrasted magnetization reversal and magnetoresistance in the systems. We discuss this morphology–physical property relationship, and the possibility to further tune the magnetism and magneto-transport in such nanocomposites

Designing new ferrite/manganite nanocomposites

MUSCAS, GIUSEPPE;CONCAS, GIORGIO;
2016-01-01

Abstract

Two kinds of nanocomposites of transition metal oxides were synthesized and investigated. Each nanocomposite comprises nanoparticles of La0.67Ca0.33MnO3 and CoFe2O4 in similar volume fractions, however arranged with different morphologies. The temperature-dependent magnetic and electrical properties of the two systems are found to greatly differ, suggesting different degrees of interaction and coupling of their constituents. This is confirmed by magnetic field-dependent experiments, which reveal contrasted magnetization reversal and magnetoresistance in the systems. We discuss this morphology–physical property relationship, and the possibility to further tune the magnetism and magneto-transport in such nanocomposites
2016
Ferrite, Manganite, Nanocomposites
File in questo prodotto:
File Dimensione Formato  
muscas16-ns.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/141178
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact