The effect of stitching on the fracture response of single-lap composite joints was studied by a combined experimental and numerical analysis. Unstitched and Kevlar stitched joints were tested under static and fatigue loading to characterize damage progression and failure modes; a three-dimensional finite element analysis was carried out to evaluate the influence of stitches on strain energy release rates as a function of damage and to identify the role of various stitching parameters on the fracture behaviour of joints. It was observed that the failure of the joints occurs as a consequence of the propagation of delamination at the interface between the adherends; the propagation is stable under fatigue loads and unstable under static loads. Stitching does not improve the static strength of joints but significantly prolongs the duration of the crack propagation phase under fatigue loading. The results of finite element modelling indicate that the incorporation of stitches reduce GI to zero after the delamination front passes the stitch line, but it is not effective in reducing mode II energy release rate. They also show that strain energy release rates are not greatly affected by the length of stitch-laminate debonding, which, conversely, does influence stitch tensioning. Moreover, 3D analysis reveals that stitches become less efficient in reducing the crack driving force with increasing stitching steps.

Analysis of the fracture behaviour of a stitched single lap joint

AYMERICH, FRANCESCO;
2005-01-01

Abstract

The effect of stitching on the fracture response of single-lap composite joints was studied by a combined experimental and numerical analysis. Unstitched and Kevlar stitched joints were tested under static and fatigue loading to characterize damage progression and failure modes; a three-dimensional finite element analysis was carried out to evaluate the influence of stitches on strain energy release rates as a function of damage and to identify the role of various stitching parameters on the fracture behaviour of joints. It was observed that the failure of the joints occurs as a consequence of the propagation of delamination at the interface between the adherends; the propagation is stable under fatigue loads and unstable under static loads. Stitching does not improve the static strength of joints but significantly prolongs the duration of the crack propagation phase under fatigue loading. The results of finite element modelling indicate that the incorporation of stitches reduce GI to zero after the delamination front passes the stitch line, but it is not effective in reducing mode II energy release rate. They also show that strain energy release rates are not greatly affected by the length of stitch-laminate debonding, which, conversely, does influence stitch tensioning. Moreover, 3D analysis reveals that stitches become less efficient in reducing the crack driving force with increasing stitching steps.
2005
Stitching; Joints/joining; Delamination
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/14807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 45
social impact