In this paper we consider a nonlinear Neumann problem driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality). Using minimax methods based on the nonsmooth critical point theory together with suitable truncation techniques, we show that the problem has at least three nontrivial smooth solutions. Two of these solutions have constant sign (one is positive, the other negative).

Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities

IANNIZZOTTO, ANTONIO;
2009

Abstract

In this paper we consider a nonlinear Neumann problem driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality). Using minimax methods based on the nonsmooth critical point theory together with suitable truncation techniques, we show that the problem has at least three nontrivial smooth solutions. Two of these solutions have constant sign (one is positive, the other negative).
p-Laplacian; Minimax methods; Truncations; Locally Lipschitz potentials
File in questo prodotto:
File Dimensione Formato  
Iannizzotto-Papageorgiou-NA.pdf

non disponibili

Descrizione: Articolo
Tipologia: versione editoriale
Dimensione 340.93 kB
Formato Adobe PDF
340.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/15118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact