Adenosine derived from the degradation of ATP/AMP functions as a signalling molecule in the nervous system through the occupation of A1, A2, and A3 adenosine receptors. Adenosine A2A receptors have a selective localization to the basal ganglia and specifically to the indirect output pathway, and as a consequence offer a unique opportunity to modulate the output from the striatum that is believed critical to the occurrence of motor components of PD. Indeed, the ability of A2A antagonists to modulate basal ganglia neurotransmission has been shown to be associated with improved motor function in experimental models of PD. This suggests that A2A antagonists would be effective as a symptomatic treatment in humans without provoking marked dyskinesia. Indeed, the A2A antagonist istradefylline reduces OFF time in moderate- to late-stage patients with PD already receiving dopaminergic therapy, with an increase in non-troublesome dyskinesia. Adenosine and adenosine receptors also exert actions relevant to pathogenesis in PD, raising the possibility of their use as neuroprotective agents. Both epidemiologic evidence and the current preclinical data strongly support a role for A2A antagonists in protecting dopaminergic neurons and influencing the onset and progression of PD

Adenosine, adenosine A2A antagonists, and Parkinson's disease

MORELLI, MICAELA;
2009-01-01

Abstract

Adenosine derived from the degradation of ATP/AMP functions as a signalling molecule in the nervous system through the occupation of A1, A2, and A3 adenosine receptors. Adenosine A2A receptors have a selective localization to the basal ganglia and specifically to the indirect output pathway, and as a consequence offer a unique opportunity to modulate the output from the striatum that is believed critical to the occurrence of motor components of PD. Indeed, the ability of A2A antagonists to modulate basal ganglia neurotransmission has been shown to be associated with improved motor function in experimental models of PD. This suggests that A2A antagonists would be effective as a symptomatic treatment in humans without provoking marked dyskinesia. Indeed, the A2A antagonist istradefylline reduces OFF time in moderate- to late-stage patients with PD already receiving dopaminergic therapy, with an increase in non-troublesome dyskinesia. Adenosine and adenosine receptors also exert actions relevant to pathogenesis in PD, raising the possibility of their use as neuroprotective agents. Both epidemiologic evidence and the current preclinical data strongly support a role for A2A antagonists in protecting dopaminergic neurons and influencing the onset and progression of PD
2009
Parkinson's disease; Adenosine; Adenosine antagonists
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/15399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 49
  • Scopus 191
  • ???jsp.display-item.citation.isi??? 215
social impact