We study biminimal immersions: that is, immersions which are critical points of the bienergy for normal variations with fixed energy. We give a geometrical description of the Euler–Lagrange equa- tion associated with biminimal immersions for both biminimal curves in a Riemannian manifold, with particular attention given to the case of curves in a space form, and isometric immersions of codimen- sion 1 in a Riemannian manifold, in particular for surfaces of a three-dimensional manifold. We describe two methods of constructing families of biminimal surfaces using both Riemannian and horizontally homothetic submersions.

Biminimal immersions

MONTALDO, STEFANO
2008

Abstract

We study biminimal immersions: that is, immersions which are critical points of the bienergy for normal variations with fixed energy. We give a geometrical description of the Euler–Lagrange equa- tion associated with biminimal immersions for both biminimal curves in a Riemannian manifold, with particular attention given to the case of curves in a space form, and isometric immersions of codimen- sion 1 in a Riemannian manifold, in particular for surfaces of a three-dimensional manifold. We describe two methods of constructing families of biminimal surfaces using both Riemannian and horizontally homothetic submersions.
biminimal surfaces; biharmonic maps; Thurston geometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/15605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 48
social impact