We show that all eigenfunctions of linear partial differential operators in $R^n$ with polynomial coefficients. We also show that under semilinear polynomial perturbations all nonzero homoclinics keep the super-exponential decay of the above type, whereas a loss of the holomorphicity occurs. Our estimates on homoclinics are sharp. of Shubin type are extended to entire functions in $C^n$ of finite exponential type 2 and decay like $exp(−|z|2)$ for $|z|\to \infty$ in conic neighbourhoods of the form $|Im z| \leq |Re z|$.

Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients

GRAMTCHEV, TODOR VASSILEV;
2006-01-01

Abstract

We show that all eigenfunctions of linear partial differential operators in $R^n$ with polynomial coefficients. We also show that under semilinear polynomial perturbations all nonzero homoclinics keep the super-exponential decay of the above type, whereas a loss of the holomorphicity occurs. Our estimates on homoclinics are sharp. of Shubin type are extended to entire functions in $C^n$ of finite exponential type 2 and decay like $exp(−|z|2)$ for $|z|\to \infty$ in conic neighbourhoods of the form $|Im z| \leq |Re z|$.
2006
Harmonic oscillator,; Shubin pseudodifferential operators,; Gelfand–Shilov spaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/17358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 34
social impact