We describe here a Vector Finite Difference approach to the evaluation of waveguide eigenvalues and modes for rectangular, circular and elliptical waveguides. The FD is applied using a 2D cartesian, polar and elliptical grid in the waveguide section. A suitable Taylor expansion of the vector mode function allows to take exactly into account the boundary condition. To prevent the raising of spurious modes, our FD approximation results in a constrained eigenvalue problem, that we solve using a decomposition method. This approach has been evaluated comparing our results to the analytical modes of rectangular and circular waveguide, and to known data for the elliptic case.
Curvilinear vector finite difference approach to the computation of waveguide modes
FANTI, ALESSANDRO
;MAZZARELLA, GIUSEPPE;MONTISCI, GIORGIO
2012-01-01
Abstract
We describe here a Vector Finite Difference approach to the evaluation of waveguide eigenvalues and modes for rectangular, circular and elliptical waveguides. The FD is applied using a 2D cartesian, polar and elliptical grid in the waveguide section. A suitable Taylor expansion of the vector mode function allows to take exactly into account the boundary condition. To prevent the raising of spurious modes, our FD approximation results in a constrained eigenvalue problem, that we solve using a decomposition method. This approach has been evaluated comparing our results to the analytical modes of rectangular and circular waveguide, and to known data for the elliptic case.File | Dimensione | Formato | |
---|---|---|---|
AEM2012-FD.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.