In this paper, using the framework of equivariant differential geometry, we study proper SO(p+1)×SO(q+1)-invariant biconservative hypersurfaces into the Euclidean space R^n (n = p + q + 2) and proper SO(p + 1)-invariant biconservative hypersurfaces into the Euclidean space R^n (n = p+2). Moreover, we show that, in these two classes of invariant families, there exists no proper biharmonic immersion.

Proper biconservative immersions into the Euclidean space

MONTALDO, STEFANO;RATTO, ANDREA
2016

Abstract

In this paper, using the framework of equivariant differential geometry, we study proper SO(p+1)×SO(q+1)-invariant biconservative hypersurfaces into the Euclidean space R^n (n = p + q + 2) and proper SO(p + 1)-invariant biconservative hypersurfaces into the Euclidean space R^n (n = p+2). Moreover, we show that, in these two classes of invariant families, there exists no proper biharmonic immersion.
Biconservative maps; Biharmonic maps; Biharmonic submanifolds; Equivariant differential geometry; Applied mathematics
File in questo prodotto:
File Dimensione Formato  
M_O_R_biconservative_cones_final.pdf

accesso aperto

Tipologia: versione post-print
Dimensione 351.33 kB
Formato Adobe PDF
351.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/176225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact