Background and objective Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames. Methods This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio. Results Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.06 ± 3.64% and 81.34 ± 16.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings. Conclusions We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance.

Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach

SABA, LUCA;
2016

Abstract

Background and objective Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames. Methods This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio. Results Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.06 ± 3.64% and 81.34 ± 16.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings. Conclusions We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance.
Calcium volume; Computational time; Coronary artery; IVUS; Multiresolution; Precision-of-merit; Computer science applications; Computer vision and pattern recognition; Software; Health informatics
File in questo prodotto:
File Dimensione Formato  
banchhor2016.pdf

Solo gestori archivio

Tipologia: versione pre-print
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/177320
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 15
social impact