Enhancement of ultrasound (US) images is required for proper visual inspection and further pre-processing since US images are generally corrupted with speckle. In this paper, a new approach based on non-local means (NLM) method is proposed to remove the speckle noise in the US images. Since the interpolated final Cartesian image produced from uncompressed ultrasound data contaminated with fully developed speckle can be represented by a Gamma distribution, a Gamma model is incorporated in the proposed denoising procedure. In addition, the scale and shape parameters of the Gamma distribution are estimated using the maximum likelihood (ML) method. Bias due to speckle noise is expressed using these parameters and is removed from the NLM filtered output. The experiments on phantom images and real 2D ultrasound datasets show that the proposed method outperforms other related well-accepted methods, both in terms of objective and subjective evaluations. The results demonstrate that the proposed method has a better performance in both speckle reduction and preservation of structural features.

Speckle reduction in medical ultrasound images using an unbiased non-local means method

SABA, LUCA;
2016

Abstract

Enhancement of ultrasound (US) images is required for proper visual inspection and further pre-processing since US images are generally corrupted with speckle. In this paper, a new approach based on non-local means (NLM) method is proposed to remove the speckle noise in the US images. Since the interpolated final Cartesian image produced from uncompressed ultrasound data contaminated with fully developed speckle can be represented by a Gamma distribution, a Gamma model is incorporated in the proposed denoising procedure. In addition, the scale and shape parameters of the Gamma distribution are estimated using the maximum likelihood (ML) method. Bias due to speckle noise is expressed using these parameters and is removed from the NLM filtered output. The experiments on phantom images and real 2D ultrasound datasets show that the proposed method outperforms other related well-accepted methods, both in terms of objective and subjective evaluations. The results demonstrate that the proposed method has a better performance in both speckle reduction and preservation of structural features.
Denoising; Maximum likelihood estimation; Non-local means; Speckle noise reduction; Ultrasound image; Health informatics; Signal processing
File in questo prodotto:
File Dimensione Formato  
1-ees2.0-S1746809416300222-main.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/177576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 65
social impact