Porous yittria-stabilized zirconia is an important advanced ceramic material for technological applications. One of the most important characteristics of this material is low thermal conductivity, which is greatly influenced by the presence of pores into the microstructure. In fact, air trapped in the pores represents a better thermal insulator. The role of the pore volume fraction on porous material characteristics has been extensively studied. On the other hand, the influence of the structure disorder, the pore size range and pore size distribution have been studied much less. In this study, an intermingled fractal model capable of relating thermal properties of ceramic materials and their pore microstructure has been proposed. Model predictions are found confirming the experimental data fairly well, even better than the others models available in the literature.
Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions
PIA, GIORGIO;CASNEDI, MARIA LUDOVICA;SANNA, ULRICO UMBERTO MARIA
2016-01-01
Abstract
Porous yittria-stabilized zirconia is an important advanced ceramic material for technological applications. One of the most important characteristics of this material is low thermal conductivity, which is greatly influenced by the presence of pores into the microstructure. In fact, air trapped in the pores represents a better thermal insulator. The role of the pore volume fraction on porous material characteristics has been extensively studied. On the other hand, the influence of the structure disorder, the pore size range and pore size distribution have been studied much less. In this study, an intermingled fractal model capable of relating thermal properties of ceramic materials and their pore microstructure has been proposed. Model predictions are found confirming the experimental data fairly well, even better than the others models available in the literature.File | Dimensione | Formato | |
---|---|---|---|
2016_Porosity and pore size distribution influence on thermal conductivity of yttria-stabilizedzirconia.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.