Gait recognition is an emerging biometric technology that identifies people through the analysis of the way they walk. The challenge of model-free based gait recognition is to cope with various intra-class variations such as clothing variations, carrying conditions and angle variations that adversely affect the recognition performance. This paper proposes a method to select the most discriminative human body part based on group Lasso of motion to reduce the intra-class variation so as to improve the recognition performance. The proposed method is evaluated using CASIA Gait Dataset B. Experimental results demonstrate that the proposed technique gives promising results.
Human body part selection by group lasso of motion for model-free gait recognition
MARCIALIS, GIAN LUCA
2016-01-01
Abstract
Gait recognition is an emerging biometric technology that identifies people through the analysis of the way they walk. The challenge of model-free based gait recognition is to cope with various intra-class variations such as clothing variations, carrying conditions and angle variations that adversely affect the recognition performance. This paper proposes a method to select the most discriminative human body part based on group Lasso of motion to reduce the intra-class variation so as to improve the recognition performance. The proposed method is evaluated using CASIA Gait Dataset B. Experimental results demonstrate that the proposed technique gives promising results.File | Dimensione | Formato | |
---|---|---|---|
J21_SPL_2016.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
692.14 kB
Formato
Adobe PDF
|
692.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.