This paper addresses the non-parametric estimation of the stochastic process related to the classification problem that arises in robot programming by demonstration of compliant motion tasks. Robot programming by demonstration is a robot programming paradigm in which a human operator demonstrates the task to be performed by the robot. In such demonstration, several observable variables, such as velocities and forces can be modeled, non-parametrically, in order to classify the current state of a contact between an object manipulated by the robot and the environment in which it operates. Essential actions in compliant motion tasks are the contacts that take place, and therefore, it is important to understand the sequence of contact states made during a demonstration, called contact classification. We propose a contact classification algorithm based on the random forest algorithm. The main advantage of this approach is that it does not depend on the geometric model of the objects involved in the demonstration. Moreover, it does not rely on the kinestatic model of the contact interactions. The comparison with state-of-the-art contact classifiers shows that random forest classifier is more accurate.

A random forest application to contact-state classification for robot programming by human demonstration

Cabras, Stefano.;Castellanos, M. E.;
2016-01-01

Abstract

This paper addresses the non-parametric estimation of the stochastic process related to the classification problem that arises in robot programming by demonstration of compliant motion tasks. Robot programming by demonstration is a robot programming paradigm in which a human operator demonstrates the task to be performed by the robot. In such demonstration, several observable variables, such as velocities and forces can be modeled, non-parametrically, in order to classify the current state of a contact between an object manipulated by the robot and the environment in which it operates. Essential actions in compliant motion tasks are the contacts that take place, and therefore, it is important to understand the sequence of contact states made during a demonstration, called contact classification. We propose a contact classification algorithm based on the random forest algorithm. The main advantage of this approach is that it does not depend on the geometric model of the objects involved in the demonstration. Moreover, it does not rely on the kinestatic model of the contact interactions. The comparison with state-of-the-art contact classifiers shows that random forest classifier is more accurate.
2016
Multi-class contact classification; Sensor force analysis; Supervised learning; Business, management and accounting (all); Modeling and simulation; Management science and operations research
File in questo prodotto:
File Dimensione Formato  
2015-asmbi.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione post-print (AAM)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/180674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact