In this paper, a new rich Vehicle Routing Problem that could arise in a real life context is introduced and formalized: the Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet. The goal of the problem is to minimize the total delivery cost. A heterogeneous fleet composed of vehicles with different capacity, characteristics (i.e. refrigerated vehicles) and hourly costs is considered. A limit on the maximum route duration is imposed. Unlike what happens in classical multi-depot VRP, not every customer may/will be served by all the vehicles or from all the depots. The planning horizon, as in most real life applications, consists of multiple periods, and the period in which each route is performed is a variable of the problem. The set of periods, within the time horizon, in which the delivery may be carried out is known for each customer. A Mixed Integer Programming (MIP) formulation for MDMPVRPHF is presented in this paper, and an Adaptive Large Neighborhood Search (ALNS) based Matheuristic approach is proposed, in which different destroy operators are defined. Computational results, pertaining to realistic instances, which show the effectiveness of the proposed method, are provided. (C) 2015 Elsevier Ltd. All rights reserved.
A real-life Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based Matheuristic
MANCINI, SIMONA
2016-01-01
Abstract
In this paper, a new rich Vehicle Routing Problem that could arise in a real life context is introduced and formalized: the Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet. The goal of the problem is to minimize the total delivery cost. A heterogeneous fleet composed of vehicles with different capacity, characteristics (i.e. refrigerated vehicles) and hourly costs is considered. A limit on the maximum route duration is imposed. Unlike what happens in classical multi-depot VRP, not every customer may/will be served by all the vehicles or from all the depots. The planning horizon, as in most real life applications, consists of multiple periods, and the period in which each route is performed is a variable of the problem. The set of periods, within the time horizon, in which the delivery may be carried out is known for each customer. A Mixed Integer Programming (MIP) formulation for MDMPVRPHF is presented in this paper, and an Adaptive Large Neighborhood Search (ALNS) based Matheuristic approach is proposed, in which different destroy operators are defined. Computational results, pertaining to realistic instances, which show the effectiveness of the proposed method, are provided. (C) 2015 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
ALNS_TRC_2016.pdf
Solo gestori archivio
Descrizione: Articolo
Tipologia:
versione post-print (AAM)
Dimensione
420.42 kB
Formato
Adobe PDF
|
420.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.