Talitrid amphipods (sandhoppers and beach fleas) are typical of the supralittoral zone. They are known to thrive on stranded materials, including detrital marine angiosperms and macroalgae, as well as occasional dead animals. In this work, the gut microbiota of five species of talitrid amphipods (Talitrus saltator, Talorchestia ugolinii, Sardorchestia pelecaniformis, Orchestia montagui and Orchestia stephenseni) collected in Sardinia (Italy) has been investigated through: i) metabarcoding analysis of the amplified 16S rRNA V4 region; and ii) quantification of family 48 glycosyl hydrolase genes (GHF48), involved in cellulose degradation. Results indicate that, though talitrid gut biodiversity is not directly related to taxon or sampling locality, the animals' digestive tracts may host species-specific bacterial communities. In particular, gut microbiota of O. montagui, an inhabitant of Posidonia banquettes and macro-algae mat, showed the greatest differences in taxonomic composition and the highest proportion of GHF48 genes with respect to 16S rRNA genes. These results suggest that the different talitrid species may host species-specific bacterial communities whose function could partially reflect the different microhabitats and food preferences of their host.
Exploring the bacterial gut microbiota of supralittoral talitrid amphipods
MARRAS, BARBARA;SCHINTU, MARCO;
2017-01-01
Abstract
Talitrid amphipods (sandhoppers and beach fleas) are typical of the supralittoral zone. They are known to thrive on stranded materials, including detrital marine angiosperms and macroalgae, as well as occasional dead animals. In this work, the gut microbiota of five species of talitrid amphipods (Talitrus saltator, Talorchestia ugolinii, Sardorchestia pelecaniformis, Orchestia montagui and Orchestia stephenseni) collected in Sardinia (Italy) has been investigated through: i) metabarcoding analysis of the amplified 16S rRNA V4 region; and ii) quantification of family 48 glycosyl hydrolase genes (GHF48), involved in cellulose degradation. Results indicate that, though talitrid gut biodiversity is not directly related to taxon or sampling locality, the animals' digestive tracts may host species-specific bacterial communities. In particular, gut microbiota of O. montagui, an inhabitant of Posidonia banquettes and macro-algae mat, showed the greatest differences in taxonomic composition and the highest proportion of GHF48 genes with respect to 16S rRNA genes. These results suggest that the different talitrid species may host species-specific bacterial communities whose function could partially reflect the different microhabitats and food preferences of their host.File | Dimensione | Formato | |
---|---|---|---|
Abdelrhman et al 2016, Res. Microbiology.pdf
Solo gestori archivio
Tipologia:
versione post-print (AAM)
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.