After 2 months from the infestation of tomato plants with the root-knot nematode (RKN) Meloidogyne incognita, we performed a gas chromatography-mass spectrometry untargeted fingerprint analysis for the identification of characteristic metabolites and biomarkers. Principal component analysis, and orthogonal projections to latent structures discriminant analysis suggested dramatic local changes of the plant metabolome. In the case of tomato leaves, β-alanine, phenylalanine, and melibiose were induced in response to RKN stimuli, while ribose, glycerol, myristic acid, and palmitic acid were reduced. For tomato stems, upregulated metabolites were ribose, sucrose, fructose, and glucose, while fumaric acid and glycine were downregulated. The variation in molecular strategies to the infestation of RKNs may play an important role in how Solanum lycopersicum and other plants adapt to nematode parasitic stress.

Untargeted Metabolomics of Tomato Plants after Root-Knot Nematode Infestation

ELOH, KODJO;MAXIA, ANDREA;CABONI, PIERLUIGI
2016-01-01

Abstract

After 2 months from the infestation of tomato plants with the root-knot nematode (RKN) Meloidogyne incognita, we performed a gas chromatography-mass spectrometry untargeted fingerprint analysis for the identification of characteristic metabolites and biomarkers. Principal component analysis, and orthogonal projections to latent structures discriminant analysis suggested dramatic local changes of the plant metabolome. In the case of tomato leaves, β-alanine, phenylalanine, and melibiose were induced in response to RKN stimuli, while ribose, glycerol, myristic acid, and palmitic acid were reduced. For tomato stems, upregulated metabolites were ribose, sucrose, fructose, and glucose, while fumaric acid and glycine were downregulated. The variation in molecular strategies to the infestation of RKNs may play an important role in how Solanum lycopersicum and other plants adapt to nematode parasitic stress.
2016
acylsugars; Meloidogyne incognita; metabonomics; plant defense response; plant metabolism; Agricultural and Biological Sciences (all); Chemistry (all)
File in questo prodotto:
File Dimensione Formato  
untarg tomato.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/184817
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact