Neuroinflammation is associated with L-DOPA treatment in Parkinson's disease (PD), suggesting a role in L-DOPA-induced dyskinesia (LID), however it is unclear whether increased inflammation is specifically related to the dyskinetic outcome of L-DOPA treatment. Diversely from oral L-DOPA, continuous intrajejunal L-DOPA infusion is associated with very low dyskinetic outcome in PD patients. We reproduced these regimens of administration in 6-OHDA-lesioned hemiparkinsonian rats, where dyskinetic responses and striatal neuroinflammation induced by chronic pulsatile (DOPAp) or continuous (DOPAc) L-DOPA were compared. Moreover, we investigated the contribution of a peripheral inflammatory challenge with lipopolysaccharide (LPS), to DOPAp-induced dyskinetic and neuroinflammatory responses. Rats 6-OHDA-infused in the medial forebrain bundle received two weeks treatment with DOPAp, DOPAc via subcutaneous osmotic minipumps, or DOPAp followed by DOPAc. L-DOPA plasma levels were measured in all experimental groups. An independent group of rats received one peripheral dose of LPS 24 h before DOPAp treatment. Abnormal involuntary movements (AIMs) were evaluated as a rat model of LID. Immunoreactivity (IR) for OX-42, microglial and neuronal TNF-α, iNOS and GFAP was quantified in denervated and contralateral striatum. In addition, serum TNF-α was measured. The 6-OHDA denervation induced a mild microgliosis in the striatum two weeks after neurotoxin infusion, and increased TNF-α IR in microglia. Rats receiving the DOPAp treatment developed AIMs and displayed increased striatal OX-42, microglial TNF-α, iNOS and GFAP. Moreover, TNF-α IR was also increased in a subpopulation of striatal neurons. Conversely, DOPAc did not induce AIMs or inflammatory responses in either drug-naïve animals or rats that were previously dyskinetic when exposed to DOPAp. Serum TNF-α was not altered by any L-DOPA treatment. LPS pre-treatment increased the degree of DOPAp-induced AIMs and striatal IR for OX-42, TNF-α, iNOS and GFAP. Altogether the present findings indicate that in the 6-OHDA model, chronic L-DOPA induces striatal inflammatory responses, which however depend upon the administration regimen and the dyskinetic outcome of drug treatment. The potentiation of dyskinetic responses by LPS suggests a reciprocal causal link between neuroinflammation and LID.

Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous L-DOPA delivery in the 6-OHDA model of Parkinson's disease

MULAS, GIOVANNA;ESPA, ELENA;FENU, SANDRO;SPIGA, SATURNINO;CARBONI, EZIO;SIMBULA, GABRIELLA;JADZIC, DRAGANA;ANGIUS, FABRIZIO;SPOLITU, STEFANO;BATETTA, BARBARA;LECCA, DANIELA;CARTA, ANNAROSA
2016-01-01

Abstract

Neuroinflammation is associated with L-DOPA treatment in Parkinson's disease (PD), suggesting a role in L-DOPA-induced dyskinesia (LID), however it is unclear whether increased inflammation is specifically related to the dyskinetic outcome of L-DOPA treatment. Diversely from oral L-DOPA, continuous intrajejunal L-DOPA infusion is associated with very low dyskinetic outcome in PD patients. We reproduced these regimens of administration in 6-OHDA-lesioned hemiparkinsonian rats, where dyskinetic responses and striatal neuroinflammation induced by chronic pulsatile (DOPAp) or continuous (DOPAc) L-DOPA were compared. Moreover, we investigated the contribution of a peripheral inflammatory challenge with lipopolysaccharide (LPS), to DOPAp-induced dyskinetic and neuroinflammatory responses. Rats 6-OHDA-infused in the medial forebrain bundle received two weeks treatment with DOPAp, DOPAc via subcutaneous osmotic minipumps, or DOPAp followed by DOPAc. L-DOPA plasma levels were measured in all experimental groups. An independent group of rats received one peripheral dose of LPS 24 h before DOPAp treatment. Abnormal involuntary movements (AIMs) were evaluated as a rat model of LID. Immunoreactivity (IR) for OX-42, microglial and neuronal TNF-α, iNOS and GFAP was quantified in denervated and contralateral striatum. In addition, serum TNF-α was measured. The 6-OHDA denervation induced a mild microgliosis in the striatum two weeks after neurotoxin infusion, and increased TNF-α IR in microglia. Rats receiving the DOPAp treatment developed AIMs and displayed increased striatal OX-42, microglial TNF-α, iNOS and GFAP. Moreover, TNF-α IR was also increased in a subpopulation of striatal neurons. Conversely, DOPAc did not induce AIMs or inflammatory responses in either drug-naïve animals or rats that were previously dyskinetic when exposed to DOPAp. Serum TNF-α was not altered by any L-DOPA treatment. LPS pre-treatment increased the degree of DOPAp-induced AIMs and striatal IR for OX-42, TNF-α, iNOS and GFAP. Altogether the present findings indicate that in the 6-OHDA model, chronic L-DOPA induces striatal inflammatory responses, which however depend upon the administration regimen and the dyskinetic outcome of drug treatment. The potentiation of dyskinetic responses by LPS suggests a reciprocal causal link between neuroinflammation and LID.
2016
Cytokine; Dyskinesia; Inflammation; L-DOPA; Microglia; Parkinson; TNF-alpha; Neurology; Developmental Neuroscience
File in questo prodotto:
File Dimensione Formato  
Mulas et al, 2016 (2).pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/186207
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 70
social impact