The development of Web-based information systems coupled with advanced monitoring systems could prove to be extremely useful in landslide risk management and mitigation. A new frontier in the field of rainfall-triggered landslides (RTLs) lies in the real-time modelling of the relationship between rainfall and slope stability; this requires an intensive monitoring of some key parameters that could be achieved through the use of modern and often low-cost technologies. This work describes an integrated information system for early warning of RTLs that has been deployed and tested, in a prototypal form, for an Italian pilot site. The core of the proposed system is a wireless sensor network collecting meteorological, hydrological and geotechnical data. Data provided by different sensors and transmitted to a Web-based platform are used by an opportunely designed artificial neural network performing a stability analysis in near real-time or in forecast modality. The system is able to predict whether and when landslides could occur, providing early warnings of potential slope failures. System infrastructure, designed on three interacting levels, encompasses a sensing level, integrating different Web-based sensors, a processing level, using Web standard interoperability services and specifically implemented algorithms, and, finally, a warning level, providing warning information through Web technologies.

The SESAMO early warning system for rainfall-triggered landslides

VIOLA, FRANCESCO;
2016-01-01

Abstract

The development of Web-based information systems coupled with advanced monitoring systems could prove to be extremely useful in landslide risk management and mitigation. A new frontier in the field of rainfall-triggered landslides (RTLs) lies in the real-time modelling of the relationship between rainfall and slope stability; this requires an intensive monitoring of some key parameters that could be achieved through the use of modern and often low-cost technologies. This work describes an integrated information system for early warning of RTLs that has been deployed and tested, in a prototypal form, for an Italian pilot site. The core of the proposed system is a wireless sensor network collecting meteorological, hydrological and geotechnical data. Data provided by different sensors and transmitted to a Web-based platform are used by an opportunely designed artificial neural network performing a stability analysis in near real-time or in forecast modality. The system is able to predict whether and when landslides could occur, providing early warnings of potential slope failures. System infrastructure, designed on three interacting levels, encompasses a sensing level, integrating different Web-based sensors, a processing level, using Web standard interoperability services and specifically implemented algorithms, and, finally, a warning level, providing warning information through Web technologies.
2016
Artificial neural network; Early warning; Integrated information system; MEMS tilt sensor; Meteorological micro radar; Monitoring system; Geotechnical engineering and engineering geology; Atmospheric science
File in questo prodotto:
File Dimensione Formato  
2016_HYDROinfo_SESAMO.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/186666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact