Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveniences that often impact on the efficiency of terminal operations, especially in the daily planning scenario. Thus, for our study we adopted a machine learning approach in order to provide a qualitative estimate of the vessel delay/advance and to help mitigate the consequences of late/early arrivals in port. Using data on delays/advances at the individual vessel level, a comparative study between two transshipment container terminals is presented and the performance of three algorithmic models is evaluated. Results of the research indicate that when the distribution of the outcome is bimodal the performance of the discrete models is highly relevant for acquiring data characteristics. Therefore, the models are not flexible in representing data when the outcome distribution exhibits unimodal behavior. Moreover, graphical visualisation of the importance-plots made it possible to underline the most significant variables which might explain vessel arrival uncertainty at the two European ports.

Prediction of late/early arrivals in container terminals - A qualitative approach

PANI, CLAUDIA;FANCELLO, GIANFRANCO;CANNAS, MASSIMO
2015

Abstract

Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveniences that often impact on the efficiency of terminal operations, especially in the daily planning scenario. Thus, for our study we adopted a machine learning approach in order to provide a qualitative estimate of the vessel delay/advance and to help mitigate the consequences of late/early arrivals in port. Using data on delays/advances at the individual vessel level, a comparative study between two transshipment container terminals is presented and the performance of three algorithmic models is evaluated. Results of the research indicate that when the distribution of the outcome is bimodal the performance of the discrete models is highly relevant for acquiring data characteristics. Therefore, the models are not flexible in representing data when the outcome distribution exhibits unimodal behavior. Moreover, graphical visualisation of the importance-plots made it possible to underline the most significant variables which might explain vessel arrival uncertainty at the two European ports.
Classification tree; Container terminal; Data mining; Late/early arrivals; Random forest; Transportation; Urban Studies; Geography, Planning and Development
File in questo prodotto:
File Dimensione Formato  
European Journal of Transport and Infrastructure Research_.Prediction arrival_Pani.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 966.47 kB
Formato Adobe PDF
966.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/188788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 7
social impact