Introduction: The aim of the present study was to evaluate the difference in cyclic fatigue resistance between Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK) and Profile Vortex nickel-titanium (Dentsply Tulsa Dental) rotary instruments. Methods: Two groups of nickel-titanium endodontic instruments, ProFile Vortex and Vortex Blue, consisting of identical instruments in tip size and taper (15/.04, 20/.06, 25/.04, 25/.06, 30/.06, 35/.06, and 40/.04) were tested. Ten instruments from each system and size were tested for cyclic fatigue resistance, resulting in a total of 140 new instruments. All instruments were rotated in a simulated root canal with a 60° angle of curvature and a 5-mm radius of curvature of a specific cyclic fatigue testing device until fracture occurred. The number of cycles to failure and the length of the fractured tip were recorded for each instrument in each group. The mean values and standard deviation were calculated, and data were subjected to 1-way analysis of variance and a Bonferroni t test. Significance was set at the 95% confidence level. Results: When comparing the same size of the 2 different instruments, a statistically significant difference (P < .05) was noted between all sizes of Vortex Blue and Profile Vortex instruments except for tip size 15 and .04 taper (P = 1.000). No statistically significant difference (P > .05) was noted among all groups tested in terms of fragment length. Conclusions: Vortex Blue showed a significant increase in cyclic fatigue resistance when compared with the same sizes of ProFile Vortex. © 2014 American Association of Endodontists.

Blue treatment enhances cyclic fatigue resistance of Vortex nickel-titanium rotary files

COTTI, ELISABETTA;
2014-01-01

Abstract

Introduction: The aim of the present study was to evaluate the difference in cyclic fatigue resistance between Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK) and Profile Vortex nickel-titanium (Dentsply Tulsa Dental) rotary instruments. Methods: Two groups of nickel-titanium endodontic instruments, ProFile Vortex and Vortex Blue, consisting of identical instruments in tip size and taper (15/.04, 20/.06, 25/.04, 25/.06, 30/.06, 35/.06, and 40/.04) were tested. Ten instruments from each system and size were tested for cyclic fatigue resistance, resulting in a total of 140 new instruments. All instruments were rotated in a simulated root canal with a 60° angle of curvature and a 5-mm radius of curvature of a specific cyclic fatigue testing device until fracture occurred. The number of cycles to failure and the length of the fractured tip were recorded for each instrument in each group. The mean values and standard deviation were calculated, and data were subjected to 1-way analysis of variance and a Bonferroni t test. Significance was set at the 95% confidence level. Results: When comparing the same size of the 2 different instruments, a statistically significant difference (P < .05) was noted between all sizes of Vortex Blue and Profile Vortex instruments except for tip size 15 and .04 taper (P = 1.000). No statistically significant difference (P > .05) was noted among all groups tested in terms of fragment length. Conclusions: Vortex Blue showed a significant increase in cyclic fatigue resistance when compared with the same sizes of ProFile Vortex. © 2014 American Association of Endodontists.
2014
Cyclic fatigue resistance; Metal treatment; Nickel-titanium instruments; Dental alloys; Equipment design; Equipment failure; Humans; Materials testing; Nickel; Root canal preparation; Rotation; Stress, mechanical; Surface properties; Titanium; Torque; Dentistry (all)
File in questo prodotto:
File Dimensione Formato  
BLUE TREATMENT JOE 2014.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 87.44 kB
Formato Adobe PDF
87.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/192200
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 87
social impact