For a homogeneous anisotropic and linearly elastic solid, the general expression of Young's modulus E(n), embracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the evaluation of those directions n at which E(n) attains stationary values. Cubic and transversely isotropic symmetry classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real materials are shown and graphical representations of the dependence of Young's modulus on direction n are given as well.

Extrema of Young’s modulus for cubic and transversely isotropic solids

CAZZANI, ANTONIO MARIA;
2003-01-01

Abstract

For a homogeneous anisotropic and linearly elastic solid, the general expression of Young's modulus E(n), embracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the evaluation of those directions n at which E(n) attains stationary values. Cubic and transversely isotropic symmetry classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real materials are shown and graphical representations of the dependence of Young's modulus on direction n are given as well.
2003
Anisotropic elasticity; Cubic symmetry; Hexagonal symmetry; Young's modulus
File in questo prodotto:
File Dimensione Formato  
IJSS_40_(7)_2003_1713-1744.pdf

Solo gestori archivio

Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/1933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 98
social impact