The self-assembly behaviour of the eight stereoisomers of Val-Phe-Phe tripeptides under physiological conditions is assessed by several spectroscopy and microscopy techniques. We report the first examples of self-organised hydrogels from tripeptides in the l-d-l or d-l-d configuration, besides the expected gels with the d-l-l or l-d-d configuration, thus widening the scope for using amino acid chirality as a tool to drive self-assembly. Importantly, the positions of d- and l-amino acids in the gelling tripeptides determine a higher or lower supramolecular order, which translates into macroscopic gels with different rheological properties and thermal behaviours. The more durable hydrogels perform well in cytotoxicity assays, and also as peptides in solution. An appropriate design of the chirality of self-assembling sequences thus allows for the fine-tuning of the properties of the gel biomaterials. In conclusion, this study adds key details of supramolecular organization that will assist in the ex novo design of assembling chiral small molecules for their use as biomaterials.

Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials

VARGIU, ATTILIO VITTORIO
2015-01-01

Abstract

The self-assembly behaviour of the eight stereoisomers of Val-Phe-Phe tripeptides under physiological conditions is assessed by several spectroscopy and microscopy techniques. We report the first examples of self-organised hydrogels from tripeptides in the l-d-l or d-l-d configuration, besides the expected gels with the d-l-l or l-d-d configuration, thus widening the scope for using amino acid chirality as a tool to drive self-assembly. Importantly, the positions of d- and l-amino acids in the gelling tripeptides determine a higher or lower supramolecular order, which translates into macroscopic gels with different rheological properties and thermal behaviours. The more durable hydrogels perform well in cytotoxicity assays, and also as peptides in solution. An appropriate design of the chirality of self-assembling sequences thus allows for the fine-tuning of the properties of the gel biomaterials. In conclusion, this study adds key details of supramolecular organization that will assist in the ex novo design of assembling chiral small molecules for their use as biomaterials.
2015
Biomedical engineering; Medicine (all); Chemistry (all); Materials science (all)
File in questo prodotto:
File Dimensione Formato  
Tripeptides_JMatChemB_2015.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/195378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 83
social impact