Hencky (Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Ph.D. thesis, Engelmann, 1921) proposed a discrete model for elasticae by introducing rigid bars and rotational springs. Hencky (Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016) approach has been introduced to heuristically motivate the need of second gradient continua. Here, we present a novel numerical code implementing directly the discrete Hencky-type model which is robust enough to solve the problem of the determination of equilibrium configurations in the large deformation and displacement regimes. We apply this model to study some potentially applicable problems, and we compare its performances with those of the second gradient continuum model. The numerical evidence presented supports the conjecture that Hencky-type converges to second gradient model.

Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models

CAZZANI, ANTONIO MARIA;
2016-01-01

Abstract

Hencky (Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Ph.D. thesis, Engelmann, 1921) proposed a discrete model for elasticae by introducing rigid bars and rotational springs. Hencky (Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016) approach has been introduced to heuristically motivate the need of second gradient continua. Here, we present a novel numerical code implementing directly the discrete Hencky-type model which is robust enough to solve the problem of the determination of equilibrium configurations in the large deformation and displacement regimes. We apply this model to study some potentially applicable problems, and we compare its performances with those of the second gradient continuum model. The numerical evidence presented supports the conjecture that Hencky-type converges to second gradient model.
2016
74-04; 74B20; 74Q05; 74S30; Primary 74-XX; Secondary 70H03; Mathematics (all); Physics and Astronomy (all); Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
ZAMP_67_(4)_2016_#85_1-28.pdf

Solo gestori archivio

Descrizione: ZAMP_67_(4)_2016_#85_1-28
Tipologia: versione editoriale (VoR)
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ZAMP_3_hdl_11584_196008.pdf

accesso aperto

Descrizione: Versione Open Access
Tipologia: versione pre-print
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/196008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 227
  • ???jsp.display-item.citation.isi??? 140
social impact