In this paper we study the foliated structure of a contact metric (k,μ)-space. In particular, using the theory of Legendre foliations, we give a geometric interpretation to the Boeckx's classification of contact metric (k,μ)-spaces and we find necessary conditions for a contact manifold to admit a compatible contact metric (k,μ)-structure. Finally we prove that any contact metric (k,μ)-space M whose Boeckx invariant I_M is different from \pm 1 admits a compatible Sasakian or Tanaka-Webster parallel structure according to the circumstance that |I_M|>1 or |I_M|<1, respectively.

The foliated structure of contact metric (k,μ)-spaces

CAPPELLETTI MONTANO, BENIAMINO
2009

Abstract

In this paper we study the foliated structure of a contact metric (k,μ)-space. In particular, using the theory of Legendre foliations, we give a geometric interpretation to the Boeckx's classification of contact metric (k,μ)-spaces and we find necessary conditions for a contact manifold to admit a compatible contact metric (k,μ)-structure. Finally we prove that any contact metric (k,μ)-space M whose Boeckx invariant I_M is different from \pm 1 admits a compatible Sasakian or Tanaka-Webster parallel structure according to the circumstance that |I_M|>1 or |I_M|<1, respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/19768
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 10
social impact