TiO2/WO3 mixed metal oxide is used in the present work as an anode for the photoelectrosplitting of water. TiO2 is used as the support under-layer in the form of either a compact or nanotubular structure. The over-layer of WO3 is obtained via cathodic electrodeposition, by means of pulse potential technique (PPT). The performances of the samples in neutral supporting electrolyte are compared when the samples are irradiated with light at two wavelengths, 365 nm and 400 nm. The effect of the WO3 loading on the performance is also investigated, as well as the charge transfer mechanism. The results from runs carried out in solutions containing glycerol are used to study the possible role of the WO3 over-layer in the whole working mechanism of the combined structure.
TiO2–WO3 nanostructured systems for photoelectrochemical applications
PALMAS, SIMONETTA;MAIS, LAURA;VACCA, ANNALISA;MASCIA, MICHELE;RICCI, PIER CARLO
2016-01-01
Abstract
TiO2/WO3 mixed metal oxide is used in the present work as an anode for the photoelectrosplitting of water. TiO2 is used as the support under-layer in the form of either a compact or nanotubular structure. The over-layer of WO3 is obtained via cathodic electrodeposition, by means of pulse potential technique (PPT). The performances of the samples in neutral supporting electrolyte are compared when the samples are irradiated with light at two wavelengths, 365 nm and 400 nm. The effect of the WO3 loading on the performance is also investigated, as well as the charge transfer mechanism. The results from runs carried out in solutions containing glycerol are used to study the possible role of the WO3 over-layer in the whole working mechanism of the combined structure.File | Dimensione | Formato | |
---|---|---|---|
RSC advances 2016.pdf
accesso aperto
Descrizione: articolo
Tipologia:
versione editoriale (VoR)
Dimensione
4.43 MB
Formato
Adobe PDF
|
4.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.