In this article the Marchenko integral equations leading to the solution of the inverse scattering problem for the 1-D Schrödinger equation on the line are solved numerically. The linear system obtained by discretization has a structured matrix which allows one to apply FFT based techniques to solve the inverse scattering problem with minimal computational complexity. The numerical results agree with exact solutions when available. A proof of the convergence of the discretization scheme is given.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Structured Matrix Algorithms for Inverse Scattering on the Line | |
Autori: | ||
Data di pubblicazione: | 2007 | |
Rivista: | ||
Abstract: | In this article the Marchenko integral equations leading to the solution of the inverse scattering problem for the 1-D Schrödinger equation on the line are solved numerically. The linear system obtained by discretization has a structured matrix which allows one to apply FFT based techniques to solve the inverse scattering problem with minimal computational complexity. The numerical results agree with exact solutions when available. A proof of the convergence of the discretization scheme is given. | |
Handle: | http://hdl.handle.net/11584/19911 | |
Tipologia: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.