In the framework of incomplete data analysis, this paper provides a nonparametric approach to missing data imputation based on Information Retrieval. In particular, an incremental procedure based on the iterative use of tree-based method is proposed and a suitable Incremental Imputation Algorithm is introduced. The key idea is to define a lexicographic ordering of cases and variables so that conditional mean imputation via binary trees can be performed incrementally. A simulation study and real data applications are carried out to describe the advantages and the performance with respect to standard approaches
Incremental Tree-Based Missing Data Imputation with Lexicographic Ordering
CONVERSANO, CLAUDIO;
2009-01-01
Abstract
In the framework of incomplete data analysis, this paper provides a nonparametric approach to missing data imputation based on Information Retrieval. In particular, an incremental procedure based on the iterative use of tree-based method is proposed and a suitable Incremental Imputation Algorithm is introduced. The key idea is to define a lexicographic ordering of cases and variables so that conditional mean imputation via binary trees can be performed incrementally. A simulation study and real data applications are carried out to describe the advantages and the performance with respect to standard approachesFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Conversano_final_PRINT3.pdf
Solo gestori archivio
Dimensione
265.66 kB
Formato
Adobe PDF
|
265.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.