We prove that every Einstein compact almost C-manifold M^{2n+s} whose Reeb vector fields are Killing is a C-manifold. Then we extend this result considering some generalizations of the Einstein condition (η-Einstein, generalized quasi Einstein, etc.). Moreover, we find some topological properties of compact almost C-manifolds under the assumption that the Ricci tensor is transversally positive definite and the Reeb vector fields are Killing, namely we prove that the first Betti number is s and the first fundamental group is isomorphic to Z^{s}. Finally, a splitting theorem for cosymplectic manifolds is found.

Einstein-like conditions and cosymplectic geometry

CAPPELLETTI MONTANO, BENIAMINO;
2010-01-01

Abstract

We prove that every Einstein compact almost C-manifold M^{2n+s} whose Reeb vector fields are Killing is a C-manifold. Then we extend this result considering some generalizations of the Einstein condition (η-Einstein, generalized quasi Einstein, etc.). Moreover, we find some topological properties of compact almost C-manifolds under the assumption that the Ricci tensor is transversally positive definite and the Reeb vector fields are Killing, namely we prove that the first Betti number is s and the first fundamental group is isomorphic to Z^{s}. Finally, a splitting theorem for cosymplectic manifolds is found.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/20423
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact