Phase diagrams play a primary role in the understanding of materials properties. For iron-based superconductors (Fe-SC), the correct definition of their phase diagrams is crucial because of the close interplay between their crystallochemical and magnetic properties, on one side, and the possible coexistence of magnetism and superconductivity, on the other. The two most difficult issues for understanding the Fe-SC phase diagrams are: 1) the origin of the structural transformation taking place during cooling and its relationship with magnetism; 2) the correct description of the region where a crossover between the magnetic and superconducting electronic ground states takes place. Hence a proper and accurate definition of the structural, magnetic and electronic phase boundaries provides an extremely powerful tool for material scientists. For this reason, an exact definition of the thermodynamic phase fields characterizing the different structural and physical properties involved is needed, although it is not easy to obtain in many cases. Moreover, physical properties can often be strongly dependent on the occurrence of micro-structural and other local-scale features (lattice micro-strain, chemical fluctuations, domain walls, grain boundaries, defects), which, as a rule, are not described in a structural phase diagram. In this review, we critically summarize the results for the most studied 11-, 122-and 1111-type compound systems, providing a correlation between experimental evidence and theory.

The phase diagrams of iron-based superconductors: Theory and experiments

BERNARDINI, FABIO;MASSIDDA, SANDRO SALVATORE
2016-01-01

Abstract

Phase diagrams play a primary role in the understanding of materials properties. For iron-based superconductors (Fe-SC), the correct definition of their phase diagrams is crucial because of the close interplay between their crystallochemical and magnetic properties, on one side, and the possible coexistence of magnetism and superconductivity, on the other. The two most difficult issues for understanding the Fe-SC phase diagrams are: 1) the origin of the structural transformation taking place during cooling and its relationship with magnetism; 2) the correct description of the region where a crossover between the magnetic and superconducting electronic ground states takes place. Hence a proper and accurate definition of the structural, magnetic and electronic phase boundaries provides an extremely powerful tool for material scientists. For this reason, an exact definition of the thermodynamic phase fields characterizing the different structural and physical properties involved is needed, although it is not easy to obtain in many cases. Moreover, physical properties can often be strongly dependent on the occurrence of micro-structural and other local-scale features (lattice micro-strain, chemical fluctuations, domain walls, grain boundaries, defects), which, as a rule, are not described in a structural phase diagram. In this review, we critically summarize the results for the most studied 11-, 122-and 1111-type compound systems, providing a correlation between experimental evidence and theory.
2016
Iron-based superconductors; Magnetism; Nematicity; Phase diagrams; Structural transformations; Superconductivity; Physics and Astronomy (all)
File in questo prodotto:
File Dimensione Formato  
CRP.pdf

Solo gestori archivio

Descrizione: PDF
Tipologia: versione editoriale
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/206523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact