We derive the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves. The cloak is characterized by a rank 4 elasticity tensor with spatially varying entries, which are deduced from a geometric transform. Remarkably, the Navier equations retain their form under this transform, which is generally untrue [G. W. Milton et al., N. J. Phys. 8, 248 (2006)]. The validity of our approach is confirmed by comparison of the analytic Green’s function in homogeneous isotropic elastic space against full-wave finite element computations in a heterogeneous anisotropic elastic region surrounded by perfectly matched layers.
Achieving control of in-plane elastic waves
BRUN, MICHELE;
2009-01-01
Abstract
We derive the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves. The cloak is characterized by a rank 4 elasticity tensor with spatially varying entries, which are deduced from a geometric transform. Remarkably, the Navier equations retain their form under this transform, which is generally untrue [G. W. Milton et al., N. J. Phys. 8, 248 (2006)]. The validity of our approach is confirmed by comparison of the analytic Green’s function in homogeneous isotropic elastic space against full-wave finite element computations in a heterogeneous anisotropic elastic region surrounded by perfectly matched layers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.