The paper presents a reliable methodology - based on nonlinear acoustics - for impact damage detection in composite materials. The nonlinear vibro-acoustic wave modulation technique is used to detect damage. The problem of operational variability of the method with respect to the selection of frequency and amplitude of low-frequency (LF) modal excitation is investigated. This problem is addressed using the concept of stationarity of time series of vibro-acoustic data. Cointegration analysis is employed to compensate for the effect of variable operational conditions associated with LF modal (or vibration) excitation in nonlinear vibro-acoustic wave modulations. Analysis of stationary statistical characteristics of vibro-acoustic responses - after cointegration analysis - are used for damage detection. The proposed method is validated using vibro-acoustic data from laminated composite plates and composite sandwich panels. The results demonstrate that the proposed approach can effectively compensate for the effect of LF modal excitation on nonlinear vibro-acoustic wave modulations and detect the damage more accurately and robustly than the existing nonlinear acoustics based on the analysis of modulation sidebands.
Impact damage detection in smart composites using nonlinear acoustics - Cointegration analysis for removal of undesired load effect
AYMERICH, FRANCESCO;
2017-01-01
Abstract
The paper presents a reliable methodology - based on nonlinear acoustics - for impact damage detection in composite materials. The nonlinear vibro-acoustic wave modulation technique is used to detect damage. The problem of operational variability of the method with respect to the selection of frequency and amplitude of low-frequency (LF) modal excitation is investigated. This problem is addressed using the concept of stationarity of time series of vibro-acoustic data. Cointegration analysis is employed to compensate for the effect of variable operational conditions associated with LF modal (or vibration) excitation in nonlinear vibro-acoustic wave modulations. Analysis of stationary statistical characteristics of vibro-acoustic responses - after cointegration analysis - are used for damage detection. The proposed method is validated using vibro-acoustic data from laminated composite plates and composite sandwich panels. The results demonstrate that the proposed approach can effectively compensate for the effect of LF modal excitation on nonlinear vibro-acoustic wave modulations and detect the damage more accurately and robustly than the existing nonlinear acoustics based on the analysis of modulation sidebands.File | Dimensione | Formato | |
---|---|---|---|
Dao_2017_Smart_Mater._Struct._26_035012.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.