The μ-opioid receptor (MOR) and dopamine D1 receptor are co-expressed in the medium spiny neurons of striatal areas and the signaling pathways activated by these two receptors are in functional competition. However, in certain conditions an integrated response mediated by the dopamine D1 receptor transduction system is observed. In mice, morphine administration induces hypermotility and this response has been described in terms of a β-arrestin2-dependent mechanism that favors prevalent dopamine D1 receptor activation. In rats, acute morphine administration induces hypermotility only when the animals are food-deprived (FD). We aimed to further investigate the functional interaction between the MOR and dopamine D1 receptors in striatal areas and we studied the effects of acute pharmacological MOR stimulation on motility and nucleus accumbens shell (NAcS) dopamine D1 receptor signaling in control rats and rats with reduced β-arrestin2 expression in the NAcS, either non food-deprived (NFD) or FD. Motility and dopamine D1 receptor signaling increased only in FD rats in a β-arrestin2-dependent way. Moreover, FD rats showed a β-arrestin2-dependent increase in the levels of MOR-dopamine D1 receptor heteromeric complexes in the NAcS. Sucrose consumption is accompanied by release of endogenous opioids and dopamine in the NAcS. We then examined MOR-dopamine D1 receptor interactions after sucrose consumption. Sucrose increased NAcS dopamine D1 receptor signaling in NFD and FD rats, and a reduction in β-arrestin2 expression prevented this effect selectively in FD rats. These results show the β-arrestin2-dependent prevalence of dopamine D1 receptor signaling in response to acute morphine or sucrose consumption elicited by food deprivation in rats.

Fasting biases µ-opioid receptors toward β–arrestin2-dependent signaling in the accumbens shell

DEVOTO, PAOLA;
2017-01-01

Abstract

The μ-opioid receptor (MOR) and dopamine D1 receptor are co-expressed in the medium spiny neurons of striatal areas and the signaling pathways activated by these two receptors are in functional competition. However, in certain conditions an integrated response mediated by the dopamine D1 receptor transduction system is observed. In mice, morphine administration induces hypermotility and this response has been described in terms of a β-arrestin2-dependent mechanism that favors prevalent dopamine D1 receptor activation. In rats, acute morphine administration induces hypermotility only when the animals are food-deprived (FD). We aimed to further investigate the functional interaction between the MOR and dopamine D1 receptors in striatal areas and we studied the effects of acute pharmacological MOR stimulation on motility and nucleus accumbens shell (NAcS) dopamine D1 receptor signaling in control rats and rats with reduced β-arrestin2 expression in the NAcS, either non food-deprived (NFD) or FD. Motility and dopamine D1 receptor signaling increased only in FD rats in a β-arrestin2-dependent way. Moreover, FD rats showed a β-arrestin2-dependent increase in the levels of MOR-dopamine D1 receptor heteromeric complexes in the NAcS. Sucrose consumption is accompanied by release of endogenous opioids and dopamine in the NAcS. We then examined MOR-dopamine D1 receptor interactions after sucrose consumption. Sucrose increased NAcS dopamine D1 receptor signaling in NFD and FD rats, and a reduction in β-arrestin2 expression prevented this effect selectively in FD rats. These results show the β-arrestin2-dependent prevalence of dopamine D1 receptor signaling in response to acute morphine or sucrose consumption elicited by food deprivation in rats.
File in questo prodotto:
File Dimensione Formato  
Scheggi et al.Fasting biases μ-opioid receptors toward β–arrestin2-dependent signaling in the accumbens shell.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/212073
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact