We propose a version of the bundle scheme for convex nondifferentiable optimization suitable for the case of a sum-function where some of the components are "easy", that is, they are Lagrangian functions of explicitly known compact convex programs. This corresponds to a stabilized partial Dantzig-Wolfe decomposition, where suitably modified representations of the "easy" convex subproblems are inserted in the master problem as an alternative to iteratively inner-approximating them by extreme points, thus providing the algorithm with exact information about a part of the dual objective function. The resulting master problems are potentially larger and less well-structured than the standard ones, ruling out the available specialized techniques and requiring the use of general-purpose solvers for their solution; this strongly favors piecewise-linear stabilizing terms, as opposed to the more usual quadratic ones, which in turn may have an adverse effect on the convergence speed of the algorithm, so that the overall performance may depend on appropriate tuning of all these aspects. Yet, very good computational results are obtained in at least one relevant application: the computation of tight lower bounds for Fixed-Charge Multicommodity Min-Cost Flow problems.

Bundle methods for sum-functions with "easy" components: applications to multicommodity network design

GORGONE, ENRICO
2014-01-01

Abstract

We propose a version of the bundle scheme for convex nondifferentiable optimization suitable for the case of a sum-function where some of the components are "easy", that is, they are Lagrangian functions of explicitly known compact convex programs. This corresponds to a stabilized partial Dantzig-Wolfe decomposition, where suitably modified representations of the "easy" convex subproblems are inserted in the master problem as an alternative to iteratively inner-approximating them by extreme points, thus providing the algorithm with exact information about a part of the dual objective function. The resulting master problems are potentially larger and less well-structured than the standard ones, ruling out the available specialized techniques and requiring the use of general-purpose solvers for their solution; this strongly favors piecewise-linear stabilizing terms, as opposed to the more usual quadratic ones, which in turn may have an adverse effect on the convergence speed of the algorithm, so that the overall performance may depend on appropriate tuning of all these aspects. Yet, very good computational results are obtained in at least one relevant application: the computation of tight lower bounds for Fixed-Charge Multicommodity Min-Cost Flow problems.
2014
Bundle methods; Lagrangian relaxation; Multicommodity network design; Nondifferentiable optimization; Stabilized partial Dantzig-Wolfe decomposition; Software; Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
reprint.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 382.67 kB
Formato Adobe PDF
382.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/212502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 33
social impact