Surface wave methods consist of the extraction and inversion of the Rayleigh wave phase-velocity dispersion curve to recover the (usually 1D) shear-wave velocity profile. In the literature, uncertainty due to data error has not received much attention, but the discussion about uncertainty due to model error is even poorer. Even with an unrealistic noise-free dataset and an exact forward model, an inappropriate parameterization can generate solutions very far from the actual soil structure. In general, the model used for the dispersion curve interpretation is 1D. Hence, when the velocity distribution is laterally heterogeneous, model errors can have significant consequences on the reliability of the resulting shear-wave velocity distribution. From a poor velocity reconstruction, an unsatisfactory, and often dangerous site response analysis follows. In fact, shear wave measurements play a relevant role in seismic ground motion amplification estimation. In this paper, we discuss the possibility of processing the seismograms using a multi-offset phase analysis (MOPA), in order to derive soil elastic parameters for weak motion predictions. This technique allows the detection and location of the lateral discontinuities, and a better model parameterization. In fact, once the discontinuities are identified, we can split the profile into several, truly 1D, parts. The use of the standard 1D dispersion curve extraction and inversion for each side of the heterogeneity generates velocity profiles that we can put side by side to get correct 2D reconstructions of the shear-wave distributions. From 2D velocity reconstruction, we can calculate the site response that may be significantly different from the site response generated from a traditional 1D analysis of the same seismograms. In this work, we discuss the site responses of two synthetic examples with lateral heterogeneities. We show how misleading a 1D analysis may be if applied to a truly 2D velocity distribution, particularly in terms of site response prediction.

From surface wave inversion to seismic site response prediction: Beyond the 1D approach

VIGNOLI, GIULIO;CASSIANI , GIORGIO
2012-01-01

Abstract

Surface wave methods consist of the extraction and inversion of the Rayleigh wave phase-velocity dispersion curve to recover the (usually 1D) shear-wave velocity profile. In the literature, uncertainty due to data error has not received much attention, but the discussion about uncertainty due to model error is even poorer. Even with an unrealistic noise-free dataset and an exact forward model, an inappropriate parameterization can generate solutions very far from the actual soil structure. In general, the model used for the dispersion curve interpretation is 1D. Hence, when the velocity distribution is laterally heterogeneous, model errors can have significant consequences on the reliability of the resulting shear-wave velocity distribution. From a poor velocity reconstruction, an unsatisfactory, and often dangerous site response analysis follows. In fact, shear wave measurements play a relevant role in seismic ground motion amplification estimation. In this paper, we discuss the possibility of processing the seismograms using a multi-offset phase analysis (MOPA), in order to derive soil elastic parameters for weak motion predictions. This technique allows the detection and location of the lateral discontinuities, and a better model parameterization. In fact, once the discontinuities are identified, we can split the profile into several, truly 1D, parts. The use of the standard 1D dispersion curve extraction and inversion for each side of the heterogeneity generates velocity profiles that we can put side by side to get correct 2D reconstructions of the shear-wave distributions. From 2D velocity reconstruction, we can calculate the site response that may be significantly different from the site response generated from a traditional 1D analysis of the same seismograms. In this work, we discuss the site responses of two synthetic examples with lateral heterogeneities. We show how misleading a 1D analysis may be if applied to a truly 2D velocity distribution, particularly in terms of site response prediction.
2012
Civil and Structural Engineering; Geotechnical Engineering and Engineering Geology; Soil Science
File in questo prodotto:
File Dimensione Formato  
Mini-vejledning_ny_indberetning_Søgning_GEUS_formidling_2013.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/212520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact