Sea wave energy is one of the main renewable energy resources. Its exploitation is relatively simple and determines a minimum impact on the environment. The system that is most often used for wave energy harvesting is composed of an oscillating water column device together with a Wells turbine. When designing the Wells turbine, its interaction with the oscillating water column system must be taken into account, if the energy collected is to be maximized. The most important interaction phenomenon is the so called hysteresis effect, i.e. the time delay between the piston-like motion of the air water interface and the torque developed by the turbine. This work presents a detailed analysis of the flow within an oscillating water column system, focusing on the differences in performance and in secondary flow structures between acceleration and deceleration, and between the inflow and outflow phases. This analysis demonstrates how the hysteresis between acceleration and deceleration is caused uniquely by compressibility effects within the oscillating water column system, while differences in the flow parameters and secondary structures near the rotor are negligible, if equivalent flow conditions are compared. The effects of the oscillating water column system configuration on the performance are also highlighted.

A detailed analysis of the unsteady flow within a Wells turbine

GHISU, TIZIANO;PUDDU, PIERPAOLO;CAMBULI, FRANCESCO
2017-01-01

Abstract

Sea wave energy is one of the main renewable energy resources. Its exploitation is relatively simple and determines a minimum impact on the environment. The system that is most often used for wave energy harvesting is composed of an oscillating water column device together with a Wells turbine. When designing the Wells turbine, its interaction with the oscillating water column system must be taken into account, if the energy collected is to be maximized. The most important interaction phenomenon is the so called hysteresis effect, i.e. the time delay between the piston-like motion of the air water interface and the torque developed by the turbine. This work presents a detailed analysis of the flow within an oscillating water column system, focusing on the differences in performance and in secondary flow structures between acceleration and deceleration, and between the inflow and outflow phases. This analysis demonstrates how the hysteresis between acceleration and deceleration is caused uniquely by compressibility effects within the oscillating water column system, while differences in the flow parameters and secondary structures near the rotor are negligible, if equivalent flow conditions are compared. The effects of the oscillating water column system configuration on the performance are also highlighted.
2017
Computational fluid dynamics; Oscillating water column systems; Unsteady flow; Wells turbine; Wave energy; OWC; CFD; Numerical method
File in questo prodotto:
File Dimensione Formato  
TGhisu_JoPaE_reduced.pdf

Solo gestori archivio

Tipologia: versione pre-print
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/212566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact