Background Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. Objective We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Methods Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, aswell as extracellular dopamine output in the medial prefrontal cortex (mPFC). Results Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. Conclusions The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.
Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration
PORCU, PATRIZIA;LALLAI, VALERIA;LOCCI, ANDREA;SERRA, VALERIA;SERRA, MARIANGELA;DAZZI, LAURA;CONCAS, ALESSANDRA
2017-01-01
Abstract
Background Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. Objective We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Methods Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, aswell as extracellular dopamine output in the medial prefrontal cortex (mPFC). Results Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. Conclusions The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.File | Dimensione | Formato | |
---|---|---|---|
2017 Psychopharmacology Porcu .pdf
Solo gestori archivio
Descrizione: ARTICOLO IN RIVISTA
Tipologia:
versione editoriale (VoR)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.